The coefficient of  $x^2$ in the expansion of the product $(2 -x^2)$. $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$  is

  • [JEE MAIN 2018]
  • A

    $106$

  • B

    $107$

  • C

    $155$

  • D

    $108$

Similar Questions

The term independent of $x$ in the expansion of ${\left( {{x^2} - \frac{1}{x}} \right)^9}$ is

Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem

If the $6^{th}$ term in the expansion of the binomial ${\left[ {\sqrt {{2^{\log (10 - {3^x})}}} + \sqrt[5]{{{2^{(x - 2)\log 3}}}}} \right]^m}$ is equal to $21$ and it is known that the binomial coefficients of the $2^{nd}$, $3^{rd}$ and $4^{th}$ terms in the expansion represent respectively the first, third and fifth terms of an $A.P$. (the symbol log stands for logarithm to the base $10$), then $x = $

If the coefficients of $x^{7}$ in $\left(x^{2}+\frac{1}{b x}\right)^{11}$ and $x^{-7}$ in $\left(x-\frac{1}{b x^{2}}\right)^{11}, b \neq 0$, are equal, then the value of $b$ is equal to:

  • [JEE MAIN 2021]

If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to