The coefficient of  $x^2$ in the expansion of the product $(2 -x^2)$. $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$  is

  • [JEE MAIN 2018]
  • A

    $106$

  • B

    $107$

  • C

    $155$

  • D

    $108$

Similar Questions

Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$

Find the coefficient of $a^{4}$ in the product $(1+2 a)^{4}(2-a)^{5}$ using binomial theorem.

Let $K$ be the coefficient of $x^4$ in the expansion of $( 1 + x + ax^2) ^{10}$ . What is the value of $'a'$ that minimizes $K$ ?

If the second, third and fourth term in the expansion of ${(x + a)^n}$ are $240, 720$ and $1080$ respectively, then the value of $n$ is

If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of  $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$